STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae.
نویسندگان
چکیده
STD1 (MSN3) was isolated independently as a multicopy suppressor of mutations in the TATA-binding protein and in SNF4, suggesting that STD1 might couple the SNF1 kinase signaling pathway to the transcriptional machinery. We report here a direct physical interaction between STD1 and the TATA-binding protein (TBP), observed in vivo by the two-hybrid system and in vitro by binding studies. STD1 bound both native TBP in yeast cell-free extracts and purified recombinant TBP. This interaction was altered when TBP delta 57 was used, suggesting a role for the non-conserved N-terminal domain of TBP in mediating protein-protein interactions. We also show that perturbation of STD1-TBP stoichiometry alters SUC2 expression in vivo and that this effect is dependent on the N-terminal domain of TBP. The activation of SUC2 expression by increased copy number of STD1 occurs at the level of mRNA accumulation and it requires the same TATA element and uses the same transcription start site as does activation of SUC2 by glucose limitation. Taken together, these results suggest that STD1 modulates SUC2 transcription through direct interactions with TBP.
منابع مشابه
Amino acid residues in Std1 protein required for induction of SUC2 transcription are also required for suppression of TBPDelta57 growth defect in Saccharomyces cerevisiae.
The STD1 gene of Saccharomyces cerevisiae was isolated independently as a multicopy suppressor of a dominant negative mutation in the TATA-binding protein and of a mutation in the Snf1/Snf4 kinase complex, suggesting that Std1 might couple the Snf1 kinase signaling pathway to the transcriptional machinery. In order to identify the protein domains that specify these activities of the Std1 protei...
متن کاملActive Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene.
Expression of HXT1, a gene encoding a Saccharomyces cerevisiae low-affinity glucose transporter, is regulated by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are scarce. In this study we show that Snf1 protein kinase participates actively in the inhibition of HXT1 expression. Activation of Snf1, either by physiological conditions (g...
متن کاملEvidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae.
The Snf-Swi complex of the yeast Saccharomyces cerevisiae has been shown to control gene expression by controlling chromatin structure. We have analyzed the promoter of the SUC2 gene, a gene strongly controlled by Snf-Swi, by a high resolution analysis of micrococcal nuclease digests. This analysis suggests that there are at least four nucleosomes positioned over the SUC2 TATA and UAS regions u...
متن کاملStd1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae.
The Std1 protein modulates the expression of glucose-regulated genes, but its exact molecular role in this process is unclear. A two-hybrid screen for Std1-interacting proteins identified the hydrophilic C-terminal domains of the glucose sensors, Snf3 and Rgt2. The homologue of Std1, Mth1, behaves differently from Std1 in this assay by interacting with Snf3 but not Rgt2. Genetic interactions be...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 23 16 شماره
صفحات -
تاریخ انتشار 1995